Archive

Archive for the ‘math’ Category

David Hilbert và 23 bài toán của thế kỉ XX

September 4, 2010 Leave a comment

David Hilbert và 23 bài toán của thế kỉ XX

If I were to awaken after having slept for a thousand years, my first question would be: Has the Riemann hypothesis been proven? – David Hilbert

Tạm dịch là

Nếu tôi sống lại sau một nghìn năm nữa, câu hỏi đầu tiên của tôi sẽ là: Giả thuyết Riemann đã đựoc giải quyết chưa? – David Hilbert

David Hilbert (23 tháng 1, 1862, Wehlau, Đông Phổ – 14 tháng 2, 1943, Göttingen, Đức) là một nhà toán học người Đức, được công nhận như là một trong những nhà toán học có ảnh hưởng rộng lớn nhất của thế kỉ 19 đầu thế kỉ 20. Hilbert quan tâm đến hầu như tất cả các lĩnh vực của Toán học, lý thuyết cũng như ứng dụng. Nhưng ông chú ý nhiều đến Lý thuyết Số, Cơ sở Toán học, Lý thuyết Phương trình vi phân, Hình học. Ngoài ra ông còn quan tâm đến Vật lý-Toán, đến bài toán ba vật thể. Nhưng đặc biệt là ông đã trình bày tại Hội nghị Toán học ở Paris (1900) 23 bài toán nổi tiếng, mà theo ông là những hướng nghiên cứu Toán học lý thú cho các nhà Toán học thế giới ở thế kỷ XX. Hơn 100 năm trôi qua đã minh chứng cho ý kiến của Hilbert là đúng và một số những bài toán còn lại chưa có người giải được vẫn còn là nguồn “cảm hứng” cho các nhà Toán học thế kỷ XXI!
Nhưng Hilbert mở đầu cho sự nghiệp Toán học của đời mình bằng “Lý thuyết các bất biến” và đó cũng là nội dung Luận án của ông. Trước Hilbert,các nhà Toán học Cayley và Gordan cũng đã nhận xét rằng: trong mọi trường hợp, các bất biến là những đa thức của một số hữu hạn của chúng. Hilbert tìm cách hình thức hoá kết quả này và đưa đến một bài toán về sự hữu hạn (problème de finitude) trong các vành đa thức. Hilbert chứng tỏ rằng người ta có thể tìm được một số p các bất biến sao cho mọi bất biến là một đa thức của các bất biến nói trên.Tập các đa thức thích hợp tạo thành một idéal của vành cac đa thức có p bất định. Vấn đề còn lại là chứng tỏ rằng mọi idéal của một vành đa thức trên một trường là có dạng hữu hạn.Lý thuyết các bất biến không còn nữa và trở nên một trường hợp riêng của việc khảo sát các vành đa thức. Có lần, Hilbert chứng minh lại những kết quả mà Gordan đã làm nhưng đơn giản và hay hơn đến nỗi Gordan phải thốt lên: “Đây không còn là Toán học nữa mà là ‘Thần học'”, có lần Gordan khoái chí: “Tôi hoàn toàn bị chinh phục rằng ‘Thần học’ đôi lúc cũng có lợi đấy chứ”, và vì vốn khâm phục Hilbert từ trước nên Gordan tiếp tục những công việc của Hilbert.

Hilbert quay về Lý thuyết số. Năm 1893,ông đã đưa ra một chứng minh đơn giản rằng cơ số e của logarithe Neper và π(pi) là 2 số siêu việt (số siêu việt là số mà nó không thể là nghiệm của bất kỳ phương trình đại số nào) dù rằng trước đó nhà Toán học người Pháp Charles Hermite(1822-1901) đã chứng minh e là số siêu việt và Ferdinand Lindemann(1852-1939)người Đức đã chứng minh được đối với π(và từ kết quả này Lindemann chứng minh việc cầu phương một hình tròn là không làm được bằng thước và compas). Sau đó,Hilbert cũng chứng minh được conjecture(phỏng đoán) của Waring. Người ta còn biết ơn Hilbert về các conjectures (bài toán 7 và 9 trong 23 bài toán của Hilbert đề xướng) đã mở đường cho Takagi, Artin, và Chevalley.

Hilbert còn tổng quát hoá bài toán của Dirichlet(bài toán 20).Phương pháp mà ông dùng năm 1900 đã mở đường cho một cách tiếp cận mới loại bài toán mới này, và chính Courant là một trong những ngươi biết tận dụng. Năm 1901 Hilbert quay về Lý thuyết Phương trình tích phân và quan tâm nghiên cứu đến bài toán mà Poincaré đã đặt ra (bài toán 20). Ngay ở đó người ta cũng thấy manh nha nhiều phương pháp mới. Hilbert còn chứng minh lại những kết quả của Fredholm nhờ sự trực giao hoá các hệ phương trình. Ông đã tìm cách hình thức hoá cách tiến hành và nhờ Hình học phi Euclide gợi ý, ông đã đưa ra “những dạng toàn phương” có vô số số hạng. Điều này cần cho sự hội tụ của các bình phương của các thành phần.Ông còn có sáng kiến đưa ra khái niệm về sự “đầy đủ hoá”(complétude) và để ý đến phổ các toán tử. Chính vì thế mà Schmidt và Von Neuman lấy lại ý kiến của ông để lập nên Lý thuyết về các không gian Hilbert.

Trong khi thiết lập các cơ sở Toán học, Hilbert được xem như người đứng đầu phái những nhà Toán học có tư tưởng hình thức nghĩa là những nhà Toán học xây dựng Lý thuyết trên cơ sở Tiên đề, áp dụng vào các đối tượng và ý nghĩa được xem là thứ yếu (Peano được xem là đồng minh tích cực của ông trong lĩnh vực này). Chính vì vậy mà Hilbert đã lập ra Hình học bằng một hệ Tiên đề. Ông đã bổ sung cho Hình học Euclide những Tiên đề ẩn tàng (implicite). Để chứng minh cho sự cách biệt giữa thực tế vật lý của thế giới và sự Tiên đề hóa này, ông đưa ra ý nghĩ độc đáo rằng theo cách suy nghĩ và cách làm của ông thì ta có thể nghĩ: điểm có thể là một ly bia hay đường thẳng là một cái bàn; và như vậy thì khi Tiên đề được nghiệm đúng thí kết luận cũng sẽ đúng. Những định lý của Godel đã cho một cú quyết định vào hy vọng của ông sáng tạo một lý thuyết mới bằng cách chứng tỏ sự phi mâu thuẫn của nó. Cả cuộc đời, Hilbert luôn quan tâm đến sự tổng quát hoá và không ngừng tìm ra phương pháp mới để đưa thế giới Toán học tiến lên, vì vậy ông được giới Toán học tôn vinh là nhà Toán học của thế kỷ, có vai trò cơ bản trong sự nghiệp phát triển Toán học thế giới.

Hai mươi ba bài toán của David Hilbert(Bài toán chưa có lời giải được tô đỏ)

Đây là phần giới thiệu của bài phát biểu mà Hilbert đã đọc:

Ai trong chúng ta mà không cảm thấy vui sướng khi vén lên bức màn mà tương lai
ẩn đằng sau đó; nhìn thẳng vào những phát triển sắp xảy đến của khoa học và
những bí ẩn của sự phát triển trong những thế kỉ kế tiếp? Mục đích cuối cùng mà
tinh thần của các nhà toán học tương lai hướng tới sẽ là gì? Những phương pháp
mới nào, những sự kiện mới nào mà thế kỉ mới sẽ tiết lộ trong lĩnh vực bao la và
phì nhiêu của các ý tưởng toán học?

– Bài toán 1: Giả thuyết continuum có được nghiệm đúng? Có thể có một thứ tự tốt trên?

– Bài toán 2: Có thể chứng minh bằng các phương pháp hữu hạn(procédés finistes)sự bền vững của Số học?

– Bài toán 3: Có thể ứng dụng phương pháp phân tích thành đa diện để tính thể tích được không?

Bài toán 4: Hãy tìm các Hình học trong đó đường ngắn nhất đi từ điểm này đến điểm kia là đoạn thẳng?

– Bài toán 5: Có những nhóm LIE liên tục không? Nói cách khác,giả thiết tính khả vi có cần trong định nghĩa nhóm LIE?

Bài toán 6: Có thể toán học hoá các Tiên đề trong Vật lý? (Câu hỏi này chưa thật thích hợp với quan niệm hiện đại về 2 môn Toán và Lý).

– Bài toán 7: Ta nói gì về tính siêu việt của ab với a là đại số,b là vô tỷ khác 0?

Bài toán 8: Giả thiết Riemann- Tất cả các không điểm ảo của hàm dzeta có một phần ảo là ½ .

– Bài toán 9: Cho A là vành các số nguyên của một trường đại số và J là một idéal nguyên tố của A. Với a thuộc A, ta ký hiệu L(J/a) là số nghiệm của phương trình x²≡a(mod j) trừ đi 1.Đây là bài toán về tính nghịch đảo toàn phương, nghĩa là dáng điệu của L(J/a) phụ thuộc vào J.

– Bài toán 10: Có thể nào tìm được một thuật toán giúp ta xác định,sau một số hữu hạn bước,rằng một phương trình Diophante có nghiệm nguyên? (Bài toán này được nghiên cứu trong khuôn khổ các hàm đệ quy).

– Bài toán 11: Hãy thiết lập bảng phân loại các dạng toàn phương có hệ số trong một vành các số nguyên đại số.

– Bài toán 12: Hãy tổng quát hoá bài toán số 9 và nghiên cứu cách xây dựng các trường của lớp.

– Bài toán 13: Người ta chứng tỏ rằng ở bậc n=6 các nghiệm của phương trình bậc n được biểu diễn như là sự chồng chất(superposition)các hàm liên tục có 2 biến của các hệ số của phương trình. Ví dụ các nghiệm của phương trình xX²+2Yx+z=0 được viết dưới dạng f(y,h(x,z) với h(x,z)=xz và f(y,u)=-y±√(y²-u). Kết quả này sẽ sai trong trường hợp n=7

– Bài toán 14: Cho K là một trường,L là một sự nới rộng của K va M=K(X1…Xn).Ta giả sử rằng L con M. Giao L∩K[X1…Xn] có phải là một Đại số hữu hạn không?

– Bài toán 15: Hãy cho một cơ sở chặt chẽ vào kết quả dùng tính liên tục trong những bài toán Hình có dạng: Tìm số đường thẳng của không gian gặp 4 đường thẳng cho trước? (Bài toán này ngày nay được nghiên cứu trong khuôn khổ của Hình học-Đại số).

– Bài toán 16: Hãy nghiên cứu sự sắp đặt các nhánh của một đường cong không kỳ dị,đặc biệt là các đường cong tích phân của những phương trình vi phân xác định bởi đa thức homogènes(đẳng cấp) bậc n.

– Bài toán 17: Mọi phân số hữu tỷ có hệ số thực,dương hoặc bằng 0 tại miền xác định của nó,có thể biểu diễn dưới dạng tổng các bình phương của các phân số hữu tỷ?

– Bài toán 18: Tìm các pavages của không gian Rⁿbằng những đa diện congruents(toàn đẳng).

Bài toán 19: Hãy nghiên cứu tính chất giải tích của các nghiệm của phương trình vi phân thường hoặc phương trình đạo hàm riêng.

– Bài toán 20: Hilbert đề nghị tổng quát hóa bài toán của Dirichlet cho những lớp hàm rộng hơn.

– Bài toán 21: Hãy mở rộng công trình của Fuchs vào nghiên cứu các phương trình vi phân thoả mãn những điều kiện cho truớc.

– Bài toán 22: Hãy chính xác hóa chứng minh của Poincaré về tính đều hóa các hàm giải tích phức.

Bài toán 23: Hãy nghiên cứu tính trơn của các nghiệm của phương trình đạo hàm riêng xuất phát từ phép tính biến thiên.

Categories: math

100 năm ngày sinh Kurt Gödel: Một trí tuệ vĩ đại của Lô Gich và toán học

September 4, 2010 Leave a comment

100 năm ngày sinh Kurt Gödel: Một trí tuệ vĩ đại của Lô Gich và toán học :: Khoa học – Trang: 9981

 

Theo kết quả bình chọn của tờ báo danh tiếng TIMES vào cuối thế kỷ trước, thì trong số 20 nhà khoa học được bình chọn vào số những bộ óc vĩ đại có những phát minh nhiều ảnh hưởng nhất trong thế kỷ 20 có hai nhà toán học là Alan Turing và Kurt Gödel.

 

Như ta đã biết, nếu A.Turing được mệnh danh là “người cha của máy tính điện tử”, tác giả của “máy Turing”, mô hình toán học của các máy tính điện tử hiện đại, mở đầu cho một thời đại bùng nổ của khoa học tính toán và xử lý thông tin, của trí tuệ nhân tạo,…, góp phần làm thay đổi diện mạo của văn minh nhân loại từ giữa thế kỷ 20 đến nay; thì K.Gödel nổi tiếng với các định lý về tính không đầy đủ và không tự chứng minh được tính nhất quán của các hệ toán học hình thức hóa vào đầu thập niên 1930 đã làm xáo động nền tảng của toán học, lật nhào hy vọng của cả một thế hệ toán học về việc xây dựng một nền tảng vững chắc và vĩnh viễn cho toán học, đồng thời cũng mở ra một tư duy mới cho lô gích và toán học, gây ảnh hưởng to lớn đến sự phát triển tư duy triết học và khoa học trong suốt thế kỷ 20.

Kurt Gödel sinh ngày 28 tháng 4 năm 1906 tại thành phố Brünn thuộc đế quốc Áo-Hung, ngày nay là Brno thuộc Cộng hoà Séc. Khi đế quốc Áo-Hung tan rã sau Chiến tranh thế giới lần thứ nhất, ở tuổi 12, Gödel trở thành công dân của nước Tiệp Khắc, và sau đó khi ở tuổi 23 ông trở thành công dân Áo. Khi A. Hitler xâm chiếm Áo năm 1938, ông tự động mang quốc tịch Đức ở tuổi 32. Cũng vào năm đó ông lập gia đình với Adele Nimbursky, và rồi để tránh gia nhập quân đội Đức, vào tháng Giêng năm 1940 ông cùng vợ rời Châu Âu đi sang Mỹ theo đường tàu hỏa xuyên Xi-bê-ri (Liên Xô) và Nhật Bản (trước đó ông đã sang Mỹ mấy lần vào các năm 1933-1938). Đến Mỹ lần này, Gödel được nhận một vị trí làm việc tại Viện nghiên cứu tiên tiến (Institute for Advanced Study-IAS) ở Princeton. Ông trở thành một thành viên thường trực của Viện vào năm 1946, và là giáo sư chính thức của Viện từ năm 1953. Tại đây, ông được tặng giải thưởng Einstein đầu tiên vào năm 1951, và Huân chương quốc gia về khoa học năm 1974. Vào những năm cuối đời, tình hình sức khỏe của Gödel không tốt. Ông bị bệnh hoang tưởng, luôn nghi hoặc là có người âm mưu đầu độc mình. Ông không chịu ăn uống gì, ngoại trừ các thức ăn do đích thân vợ ông làm cho. Rồi đến cuối năm 1977, chính vợ ông cũng bị ốm, không còn khả năng chuẩn bị thức ăn cho ông nữa, ông đã từ chối bất kỳ thức ăn gì được đưa đến, và ông đã bị chết đói vào ngày 14 tháng Giêng năm 1978.

Cuộc đời khoa học của Kurt Gödel được bắt đầu khá sớm. Từ những năm học trung học ở Brno, quê nhà, Gödel đã tỏ ra có năng khiếu về các môn lịch sử và toán học. Năm 18 tuổi, Gödel theo anh trai của mình sang Viên (Áo) và được nhập học tại trường Đại học Viên, vào thời gian đó ông đã nắm vững các kiến thức về Toán ở trình độ Đại học. Lúc đầu ông có dự định học Vật lý lý thuyết, nhưng vẫn theo đầy đủ các bài giảng về toán học và triết học. Ông đọc Cơ sở siêu hình của khoa học tự nhiên (Metaphysische Anfangsgründe der Naturwissenschaft) của Kant, tham gia vào nhóm thành Viên với các nhà khoa học nổi tiếng như Moritz Schlick, Hans Hahn, Rudolf Carnap… Ông nghiên cứu lý thuyết số, nhưng sau khi tham gia một xêmine của Moritz Schlick nghiên cứu sách của Bertrand Russell về triết học toán học, ông chuyển niềm say mê của mình sang lôgich toán. Một sự kiện có tác động lớn định hướng cuộc đời khoa học của Gödel vào thời gian đó là việc ông dự nghe bài giảng của nhà toán học vĩ đại David Hilbert ở Bologna về tính đầy đủ và tính nhất quán của các hệ thống toán học. Ngay sau đó, vào năm 1930, ông đã hoàn thành luận án tiến sĩ với công trình chứng minh tính đầy đủ của toán lôgich tân từ cấp một1 dưới sự hướng dẫn của Hans Hahn. Và một năm sau, 1931, Gödel công bố công trình chứa các định lý quan trọng và nổi tiếng nhất của đời mình, có nội dung là: đối với các hệ thống toán học hình thức hóa với một hệ tiên đề tính được đủ mạnh để mô tả số học các số tự nhiên, thì:

1. Hệ thống không có thể vừa là nhất quán, vừa là đầy đủ (thường được biết dưới tên gọi “Định lý về tính không đầy đủ”- incompleteness theorem)2;

2. Tính nhất quán của hệ tiên đề không thể được chứng minh bên trong hệ thống đó.

Để tìm hiểu ý nghĩa và tác động của các định lý đó đối với sự phát triển của cơ sở toán học trong thế kỷ 20, ta lược qua vài nét tình hình phát triển đó trong cuối thế kỷ 19 và đầu thế kỷ 20. Ta biết thế kỷ 19 đã là một thế kỷ phát triển khá rực rỡ của toán học, nhưng đồng thời toán học cũng đã lâm sâu vào một thời kỳ “khủng hoảng” về cơ sở: trong khi giải tích toán học và nhiều ngành liên quan đạt được nhiều kết quả phong phú và sâu sắc, thì cơ sở của các ngành toán học lại gần như trống rỗng, thậm chí đối với nhiều khái niệm nền móng như thế nào là số thực, là giới hạn, là liên tục,… cũng chưa có được những định nghĩa thỏa đáng. Vào những năm đó, David Hilbert đã bắt đầu quan tâm đến việc tìm cơ sở cho toán học. Dựa trên công trình Cơ sở của Euclid, ông đã xây dựng, bổ sung và hoàn chỉnh một hệ tiên đề trọn vẹn cho Hình học, và đề xuất việc xây dựng hệ tiên đề cho các lý thuyết toán học. Một yêu cầu cơ bản đối với các hệ tiên đề là tính nhất quán của hệ đó. Để chứng minh tính nhất quán thì có một phương pháp chung là qui dẫn tính nhất quán của một hệ này (S) về tính nhất quán của một hệ khác (S’) bằng cách tìm trong lý thuyết S’ một mô hình cho S (do đó, nếu S’ nhất quán thì S cũng nhất quán), thí dụ tính nhất quán của hệ tiên đề hình học Lobachevski có thể qui dẫn về tính nhất quán của hệ tiên đề hình học Euclid, đến lượt mình, tính nhất quán của hệ này lại có thể qui dẫn về tính nhất quán của số học. Nhưng con đường qui dẫn rồi cũng cần có điểm dừng. Và vì vậy, năm 1900 ở Paris, tại Đại hội Toán học quốc tế lần thứ hai, trong bài phát biểu đề xuất 23 bài toán nổi tiếng cho toán học thế kỷ 20, Hilbert đã đặt bài toán về Sự tương thích của các tiên đề số học, tức cũng là sự nhất quán của hệ tiên đề số học, vào vị trí bài toán số 2. Nhiều năm sau đó, Hilbert đã nghiên cứu, và đến năm 1921 đã đề xuất một cách giải trực tiếp bài toán đó mà không viện đến phương pháp qui dẫn nói trên, đề xuất này về sau được gọi là chương trình Hilbert, bao gồm việc hình thức hoá hệ tiên đề số học, biến việc làm toán trong một hệ tiên đề hóa thành một kỹ thuật chuyển đổi đơn thuần các dãy hữu hạn các ký hiệu hình thức theo một số qui tắc định trước, và chuyển việc nghiên cứu các hệ toán học hình thức hóa vào trong một siêu toán làm việc với các dãy hữu hạn ký hiệu hình thức đó. Để tránh những công kích của trường phái trực giác (intituitionism) đối với cơ sở toán học, Hilbert đề nghị phát triển một siêu toán hoàn toàn nằm trong khuôn khổ của “hữu hạn luận” (finitism), và trong một siêu toán như vậy, tính nhất quán của số học hình thức hóa S được hiểu là “không thể suy diễn từ hệ hình thức S hai công thức A và /A“ (/A là phủ định của A). Như vậy, chương trình Hilbert đã mở ra một con đường để chứng minh tính nhất quán của số học hình thức hóa nói riêng, và của toán học hình thức hóa nói chung, giải quyết một vấn đề rất cơ bản của toán học. Trong thập niên 1920, cùng với Hilbert, nhiều nhà toán học lỗi lạc như Bernays, Ackermann, John von Neumann,… đã thử thực hiện chương trình Hilbert, và có lúc tưởng như đã thành công. Rồi đến năm 1931, Gödel đã làm vỡ mộng của cả một thế hệ toán học khi công bố hai định lý về tính không đầy đủ của mình, vì theo các định lý đó, số học hình thức hóa, nếu nhất quán thì không đầy đủ và không tự chứng minh được tính nhất quán của mình! Các định lý Gödel đã làm thất bại chương trình Hilbert, đưa đến sự vỡ mộng, đồng thời cũng là một sự thức tỉnh: không thể đi tìm tính chân lý của toán học (và của khoa học nói chung) bên trong cấu trúc duy lý của bản thân toán học hay của khoa học đó; cái đúng của toán học phải tìm ngoài toán học; cái cảm giác vỡ mộng và thức tỉnh đó không chỉ đến với các nhà toán học thế hệ Gödel, mà cũng còn đến với bất kỳ ai về sau khi học tập và nghiên cứu về cơ sở toán học.

Sau các định lý nổi tiếng đó, Gödel vẫn tiếp tục các nghiên cứu về cơ sở toán học, đặc biệt là trong thời gian làm việc tại Princeton. Năm 1940, ông công bố một công trình có ý nghĩa rất quan trọng đối với lý thuyết Cantor về tập hợp, đó là việc chứng minh tính nhất quán của giả thuyết liên tục và của tiên đề chọn với các tiên đề của lý thuyết tập hợp3, cho lời giải mỹ mãn đối với bài toán số 1 trong số 23 bài toán do Hilbert đề xuất năm 1900. Cùng với thành tựu quan trọng đó, trong những năm còn lại ở Princeton, Gödel tiếp tục dành sự quan tâm của mình cho triết học và vật lý, và cũng đã có một số kết quả xuất sắc.
Tất nhiên là ngày nay, khi nói đến cống hiến của Gödel đối với lôgích và toán học nói riêng, đối với khoa học nói chung, người ta thường kể đến các định lý về tính không đầy đủ của toán học hình thức hóa và những tác động trực tiếp của chúng đối với chương trình Hilbert. Các định lý Gödel đã làm lung lay nền tảng duy lý độc tôn trong toán học và khoa học nói chung, và từ đó đã mở đường cho những hướng tư duy mới trong phát triển toán học và khoa học, như các hướng chấp nhận các lôgích đối nhất quán (paraconsistent logíc), các nghịch lý hoặc các “mâu thuẫn đúng” trong các lý thuyết toán học và khoa học, đặc biệt từ những thập niên cuối thế kỷ 20 đến nay. Con đường phát triển khoa học nói chung, toán học nói riêng, đang còn rộng mở. Chúng ta tin tưởng rằng, các công trình đầy chất trí tuệ và giàu khả năng đổi mới tư duy của Kurt Gödel sẽ còn tiếp tục cho ta những cống hiến xuất sắc mới trên con đường phát triển của tương lai.

 

Categories: math

Bổ đề cơ bản là gì?

September 2, 2010 Leave a comment

Thanh Nien Online | Bổ đề cơ bản là gì?

 

* Xin cho hỏi bổ đề là gì, Bổ đề cơ bản của Chương trình Langlands mà GS Ngô Bảo Châu đã chứng minh có ý nghĩa ra sao? (Hoàng Anh – Q.Ba Đình, TP Hà Nội)

– Trong toán học, bổ đề là một giả thuyết đã được chứng minh hoặc chắc chắn sẽ được chứng minh dùng làm nền tảng để từ đó các nhà toán học tiếp tục nghiên cứu và đạt tới một kết quả cao hơn. Về bản chất, hầu như không có phân biệt chính thức giữa bổ đề và định lý ngoài mặt tác dụng và quy ước.

Còn Chương trình Langlands là tập hợp nhiều giả thuyết do nhà toán học người Canada Robert Langlands đề xuất vào năm 1967 nhằm thống nhất một số nhánh của toán học hiện đại như số học, đại số và giải tích. Từ đó đến nay, nhiều giả thuyết trong Chương trình Langlands đã được chứng minh, mang lại những kết quả cực kỳ quan trọng không những trong toán học mà cả nhiều ngành khác.

Tuy nhiên, tất cả lời giải cho các giả thuyết trong Chương trình Langlands đều dựa trên một giả thuyết nền tảng, khi đó chưa được chứng minh nhưng mặc nhiên được xem là đúng và sử dụng. Giả thuyết này chính là Bổ đề cơ bản (BĐCB). Nhiều nhà toán học hàng đầu đã bỏ công sức chứng minh BĐCB nhưng chỉ mới thành công trong một số trường hợp đặc biệt. Và GS Ngô Bảo Châu là người đã chứng minh được bổ đề này trong trường hợp tổng quát, làm sáng rõ những nghi vấn lâu nay, tạo niềm tin mới cho nghiên cứu toán học và nhiều ngành khoa học khác.

Xin mượn lời GS Châu trong một cuộc phỏng vấn với Báo Thanh Niên trước đây nói về BĐCB và Chương trình Langlands:

“Các giả thuyết Langlands là động lực cho sự phát triển của toán học lý thuyết trong vòng bốn chục năm trở lại đây. Rất nhiều bài toán tưởng như là những viên gạch riêng lẻ, nay được các giả thuyết của Langlands sắp xếp lại thành một công trình kiến trúc vĩ đại. Cá nhân tôi xếp ngang hàng các giả thuyết của Langlands với hình học phẳng của Euclid hay phát minh ra nhóm Galois trong việc giải phương trình đại số…

BĐCB là một bổ đề vì bản thân nó chỉ là một bài toán có tính kỹ thuật. Nhưng nó cũng không hẳn là bổ đề vì ông Langlands chỉ chứng minh nó trong một trường hợp đặc biệt còn trường hợp tổng quát thì được nêu như một giả thuyết. Còn cơ bản là vì cả một góc lớn của công trình kiến trúc kể trên sẽ sụp đổ nếu BĐCB không đúng. Ngoài ra, chứng minh BĐCB được nhiều người quan tâm vì ý tưởng của nó không gói gọn trong chương trình Langlands mà lại có dây mơ rễ má đến một số vấn đề của vật lý lý thuyết”.

Categories: math

GS Ngô Bảo Châu và Bổ đề cơ bản Langlands

September 2, 2010 Leave a comment

GS Ngô Bảo Châu và Bổ đề cơ bản Langlands

 

Bước qua chướng ngại 30 năm của nền toán học thế giới

Ngô Bảo Châu đã nghiên cứu thành công Bổ đề cơ bản của Langlands, một “bổ đề” khó chứng minh đến mức mà 30 năm qua, nhiều nhà toán học hàng đầu – kể cả cá nhân Langlands – đã ra sức lao vào giải quyết nhưng đều thất bại. Vị GS trẻ này đã nhận được lời mời làm việc dài hạn tại Đại học Princeton, một đại học hàng đầu ở Mỹ, nơi Albert Einstein từng giảng dạy.

Công trình toán học gây tiếng vang tức thì

Tháng 4/2004, Ngô Bảo Châu và Gérard Laumon công bố dưới dạng tiền ấn phẩm và đưa lên mạng Internet công trình toán học dày 100 trang viết bằng tiếng Pháp nhan đề: Le lemme fondamental pour les groupes unitaires (Bổ đề cơ bản cho các nhóm unita/ the fundamental lemma for unitarian groups).

Công trình đi vào một vấn đề thời sự toán học, giải quyết một bài toán lớn từng được nhiều nhà toán học hàng đầu trên thế giới lao vào chứng minh trong suốt 20 năm nhưng chưa ai thành công, cho nên ngay lập tức gây tiếng vang rộng khắp.

Ngô Bảo Châu được mời sang Nhật Bản trình bày các kết quả mới, rồi sau đó, sang Canada dự Hội nghị quốc tế về các dạng tự đẳng cấu và công thức vết tại Viện Fields. Đến hội nghị có nhiều nhà toán học nổi tiếng từ các đại học lớn trên thế giới. Ngô Bảo Châu được mời đọc báo cáo trong phiên họp toàn thể đầu tiên.

Sau khi nghe anh, chính Robert Langlands, nhà toán học đã từng đưa ra Chương trình Langlands (Langlands Program) thu hút sự quan tâm nghiên cứu của nhiều nhà toán học xuất sắc nhất hành tinh trong mấy chục năm qua, gặp ngay Ngô Bảo Châu, mời anh sang làm việc dài hạn tại Đại học Princeton, một đại học hàng đầu ở Mỹ, nơi Albert Einstein từng giảng dạy.

Gạt bỏ chướng ngại lì lợm cho giới toán học quốc tế

Do đã có kinh nghiệm trong việc nghiên cứu thành công Bổ đề cơ bản của Jacquet, Ngô Bảo Châu mạnh dạn bắt tay nghiên cứu Bổ đề cơ bản của Langlands. Sau hai năm, anh thực hiện được một bước đột phá vào mùa hè 2003, khi trở về Hà Nội “phượng đỏ bờ đê, ve kêu hàng sấu” để thăm cha mẹ tại ngôi nhà xinh xắn mới xây nhìn sang hồ Thủ Lệ biếc xanh. Những tháng tiếp theo, kết hợp với một số kết quả mà G. Laumon đã đạt được trước đó, hai tác giả hoàn thành chứng minh Bổ đề cơ bản cho các nhóm unita (the fundamental lemma for unitarian groups).

Công trình của Ngô Bảo Châu và Gérard Laumon chứng minh thành công “bổ để” này, gạt bỏ một vật chướng ngại lì lợm trên dòng chủ lưu của toán học đương đại, lập tức gây được sự chú ý của giới toán học quốc tế. Hai tác giả giúp giới toán học vượt qua một vật cản để tiến xa hơn trên con đường A. Wiles đã từng đi qua khi ông chứng minh Giả thuyết Taniyama – Shimura.

Với kết quả Ngô Bảo Châu và Gérard Laumon đạt được, giới toán học quốc tế đã bước thêm một bước tiến tới chứng minh các giả thuyết khác trong Chương trình Langlands (Langlands Program), thực hiện giấc mơ ấp ủ của nhiều thế hệ các nhà nghiên cứu nhằm tìm kiếm sự thống nhất vĩ đại huy hoàng trong toán học.

Không phải ngẫu nhiên khi chính A. Wiles, “nhà toán học lừng danh nhất thế kỷ 20”, tự mình đứng ra tiến cử Ngô Bảo Châu và Gérard Laumon nhận Giải thưởng Nghiên cứu của Viện Toán học Clay dành cho công trình toán học xuất sắc nhất thế giới năm 2004. Cũng không phải dễ dàng khi người Mỹ mời anh sang nước này làm việc với mức lương hơn 200 nghìn USD/ năm.

Giáo sư Gérard Laumon (trái) và giáo sư Ngô Bảo Châu tại Paris (Pháp) mùa hè 2004

Làm được việc chính Langlands cũng thất bại

Để hiểu được ý nghĩa của thành công trên, ta hãy quay về với quá trình chứng minh Định lý cuối cùng của Fermat, hay còn gọi là Định lý lớn Fermat. Định lý này được Pierre de Fermat, nhà toán học Pháp kiệt xuất, nêu lên vào thế kỷ 17, nhưng không để lại chứng minh! Và, vì thế, nó đã trở thành một thách đố làm bối rối những bộ óc vĩ đại nhất của nhân loại trong hơn ba thế kỷ! Thoạt nhìn, định lý thật giản đơn: Phương trình xn + yn = zn không có nghiệm nguyên dương khi n > 2.

Định lý lớn Fermat khiến ta nhớ tới một định lý đã được Pythagore, nhà toán học Hy Lạp cổ đại, chứng minh vào thế kỷ 6 trước Công nguyên, thường gọi là Định lý Pythagore: x2 + y2 = z2 (nếu trong một tam giác vuông ta coi cạnh huyền là z, các cạnh góc vuông là x và y).

Thế nhưng, hơn ba thế kỷ trôi qua, không ai chứng minh được Định lý lớn Fermat!

Giữa thế kỷ 20, hai nhà toán học Nhật Bản Yukata Taniyama và Goro Shimura đưa ra phỏng đoán thiên tài (về sau gọi là Giả thuyết Taniyama – Shimura) rằng mỗi phương trình eliptic đều có liên hệ với một dạng modular. Nếu giả thuyết này đúng, thì nó sẽ tạo điều kiện để giải quyết nhiều bài toán eliptic cho đến nay chưa giải quyết được, bằng cách tiếp cận chúng qua thế giới modular. Và, như vậy, hai thế giới eliptic và modular vốn tách biệt nhau, sẽ có thể thống nhất.

Trong những năm 1960, R. Langlands và những người cộng tác tại Đại học Princeton (Mỹ) đưa ra một loạt giả thuyết về những mối liên hệ giữa nhiều ngành toán học vốn rất khác nhau, và kêu gọi giới toán học quốc tế hợp tác chứng minh những giả thuyết cấu thành Chương trình Langlands.

Nếu những giả thuyết mang màu sắc tư biện ấy, vào một ngày đẹp trời nào đó, được chứng minh, thì sẽ mang lại những kết quả vô cùng to lớn cho toán học. Khi ấy, bất cứ một bài toán chưa giải được trong một lĩnh vực nào đều có thể biến đổi thành một bài toán tương tự trong một lĩnh vực khác, và các nhà toán học có thể huy động cả một kho to lớn những kỹ thuật mới để giải nó.

Thế nhưng, cho đến lúc bấy giờ, thì chưa có một giả thuyết nào trong chương trình đầy tham vọng của Langlands được chứng minh, kể cả giả thuyết nổi tiếng nhất là Giả thuyết Taniyama – Shimura.

Mùa thu năm 1984, tại một hội nghị toán học tổ chức trong khu Rừng Đen ở CHLB Đức, Gerhard Frey đi tới một kết luận đầy kịch tính, rằng nếu chứng minh được Giả thuyết Taniyama – Shimura, thì cũng có nghĩa là chứng minh được Định lý lớn Fermat, bởi vì định lý này chỉ là một hệ quả của giả thuyết trên.

Kết luận đó kích thích mạnh lòng “cuồng nhiệt” của Andrew Wiles, một nhà toán học người Anh làm việc tại Mỹ. A. Wiles lặng lẽ tự giam mình bảy năm liền trên một gian gác xép, cam lòng chịu cảnh “lưu đày cô đơn” để bí mật tìm kiếm lời giải cho bài toán “xuyên thế kỷ”!

Để rồi trong ba phiên họp liên tiếp vào mấy ngày 21, 22 và 23/6/1993 tại Viện Isaac Newton ở Cambridge, Vương quốc Anh, quê hương A. Wiles, ông ta viết chi chít trên hai tấm bảng lớn, đột ngột thông báo chứng minh Giả thuyết Taniyama – ShimuraĐịnh lý lớn Fermat chỉ là một hệ quả. Lúc ấy, nhiều người thành thật nghĩ rằng đó là “buổi thông báo toán học quan trọng nhất thế kỷ 20”.

Báo Guardian ở Anh cũng như báo Le Monde ở Pháp rút tít lớn trên trang nhất. Tờ People coi A. Wiles là một “người hấp dẫn trong năm” sánh ngang Công nương Diana! Một tập đoàn may sẵn quốc tế mời Wiles quảng cáo cho các mẫu quần áo đàn ông! Thế nhưng…

Nhà toán học Nick Katz, một người bạn của Wiles, bỗng phát hiện ra một lỗi nghiêm trọng nhưng hết sức tinh vi, khó thấy, trong bản thảo dày 200 trang của Wiles. Thế là, than ôi, dường như bất cứ ai cả gan lao vào chứng minh Định lý lớn Fermat, đều không tránh khỏi cuối cùng chuốc lấy… “thất bại định mệnh”! Và bài toán hóc hiểm kia vẫn cứ kiêu hãnh nằm nguyên tại chỗ như một toà… “lâu đài tăm tối”!

Nhưng là con người gang thép, Wiles không cam chịu “bó giáo quy hàng” như bao bậc “tiền bối”! Suốt 14 tháng trời tiếp theo, qua những ngày dài “đau đớn, tủi nhục và gần như tuyệt vọng”, Wiles đã sửa chữa, hoàn thiện chứng minh, rồi trao bản thảo hoàn chỉnh cho người đầu tiên là vợ ông – bà Nada – để mừng sinh nhật bà, người đã khích lệ ông trong những phút giây “đen tối nhất”..

A. Wiles thành công vang dội khi chứng minh được Định lý cuối cùng của Fermat, chấm dứt 358 năm căng thẳng trong giới toán học quốc tế. Tuy nhiên, một kết quả mà những người “ngoại đạo” ít chú ý tới, nhưng lại có ý nghĩa to lớn hơn nhiều, đó là chứng minh Giả thuyết Taniyama – Shimura.

Giả thuyết Taniyama – Shimura được chứng minh có nghĩa hòn đá tảng của Chương trình Langlands quả thật là vững chắc. Chương trình này mặc nhiên trở thành bản thiết kế cho tương lai của toán học.

Một loạt giả thuyết toán học của Chương trình này liên kết nhiều đối tượng có vẻ rất khác nhau trong các lĩnh vực toán học như lý thuyết số, hình học đại số, lý thuyết các dạng tự đẳng cấu… ngày càng thu hút sự chú ý của các nhà toán học hàng đầu, và dần dần trở thành dòng chủ lưu của toán học đương đại.

Việc gạt bỏ những vật cản trên dòng chảy chính ấy đã mang lại vinh quang cho nhiều nhà toán học: A. Wiles chứng minh thành công Định lý lớn Fermat, được tặng Giải thưởng Nghiên cứu Clay. V. Drinfeld thiết lập được tương ứng Langlands cho trường hàm trong trường hợp số chiều bằng 2; L. Lafforgue giải quyết trong trường hợp tổng quát; cả hai nhà toán học trẻ ấy đều được tặng Huy chương Fields.

Năm 1987, Langlands và cộng sự phỏng đoán về một tương tự tương ứng cho trường hàm trên trường phức, về sau, được gọi là tương ứng Langlands hình học. Để chứng minh được sự tồn tại của tương ứng đó, phải giải quyết một bài toán lớn mà lúc đầu Langlands chưa thấy hết mức độ phức tạp của nó, nên mới gọi là Bổ đề cơ bản.

Thuật ngữ bổ đề (lemma) thường dùng để chỉ một cái gì đó dễ chứng minh, một kết quả kỹ thuật giản đơn cần thiết trên con đường chứng minh một định lý đích thực. Thế nhưng, trong trường hợp này, cụm từ bổ đề cơ bản (fundamental lemma) lại gắn liền với một giả thuyết quyết định, một bộ phận không thể tách rời của Chương trình Langlands, một “bổ đề” khó chứng minh đến mức mà 30 năm qua nhiều nhà toán học hàng đầu – kể cả cá nhân Langlands – đã ra sức lao vào giải quyết nhưng đều thất bại!

 

Categories: math

Chào mừng Hòa Thượng Thích Học Toán: Chương trình Langlands và Vật lý | Dam Thanh Son’s Blog

September 2, 2010 Leave a comment

Chào mừng Hòa Thượng Thích Học Toán: Chương trình Langlands và Vật lý | Dam Thanh Son’s Blog

Bài này tôi viết nhân dịp thành tựu của Hòa Thượng Thích Học Toán được báo Time đưa vào 1 trong 10 sự kiện khoa học quan trọng nhất của năm 2009.  Tôi thực ra không biết gì lắm về chương trình Langlands, hay quan hệ của nó với Vật lý, nhưng sự kiện này làm tôi quyết định mạnh dạn viết ra những gì mình biết, ở trình độ khoa học thường thức thôi, coi như một món quà nhỏ gửi tặng Hòa Thượng. Bạn đọc sẽ thấy đoạn cuối hơi bị “cụt”. Đầu đề bài viết đáng lẽ phải khiêm tốn hơn, nhưng thôi cứ để thế để lôi kéo bạn đọc gần xa.

Trước hết, chúng ta nhắc lại một số thức phổ thông về tương tác điện từ.

Chắc ai cũng nhớ định luật Coulomb: hai điện tích e_1e_2 tương tác với nhau bằng lực

F = e_1 e_2/r^2

Nếu e_1 va e_2 cùng dấu thì đây là lực đẩy, còn nếu e_1e_2 ngược dấu thì nó là lực hút. Ta sẽ viết công thức này theo một cách khác. Do công (tức là năng lượng) = lực \times quãng đường, thế năng giữa hai hạt đó bằng:

U = e_1 e_2/r

Bây giờ giả sử ta giam hai hạt có điện tích e ở trong một cái hộp có kích thước mỗi chiều là r.

Theo công thức trên thế năng của hai hạt là khoảng e^2/r. Động năng thì là bao nhiêu? Theo lý thuyết lượng tử, khi một hạt bị giam vào một cái hộp như vậy, thì nó không thể nào đứng yên. Nguyên lý bất định của Heisenberg cho biết là xung lượng p của hạt này phải lớn hơn \hbar/r, trong đó \hbar là hằng số Planck: p> \hbar/r.

Một hạt có xung lượng thì phải có năng lượng. Theo quan điểm của thuyết tương đối thì năng lượng và xung lượng được hợp nhất thành một vectơ 4 chiều: (E, cp), trong đó c là tốc độ ánh sáng.  Không gian này là không gian Minkowski, ở đó độ dài của véctơ đó là (E^2 -(cp)^2)^{1/2} (chú ý dấu trừ!). Một hạt có khối lượng là m thì độ dài của véctơ này là mc^2:

E^2-(cp)^2 = m^2c^4

Giả sử kích thước của hộp r rất nhỏ, khi đó p lớn hơn nhiều mc, và E\approx cp.

Như vậy nếu ta có hai hạt bị giam vào một hộp kích thước r, động năng của chúng ít nhất sẽ là \hbar c/r, và thế năng là e^2/r. Tỷ lệ (thế năng)/(động năng) bằng e^2/(\hbar c), không phụ thuộc và kích thước của hộp. Thay thế giá trị của e, \hbar, c trong tự nhiên vào, con số này bằng 1/137 (chính xác hơn là 1/137.036)  Thế năng nhỏ hơn động năng khoảng 100 lần. Đây là một hằng số cơ bản của tự nhiên, vì lý do lịch sử, nó được gọi là “hằng số cấu trúc tinh tế”. Hầu như tất cả mọi thứ quanh ta (kể cả hóa học, sinh vật học) đều phụ thuộc vào hằng số này. Ví dụ ta có khoảng 100 nguyên tố hóa học trong bảng tuần hoàn chính là do nghịch đảo của hằng số này bằng khoảng 100.

Tuy thế trong tự nhiên có một điểm rất lạ mà không ai giải thích được: đó là điện tích của tất cả các hạt đều bằng một số nguyên nhân cho điện tích cơ bản. Điện tích cơ bản là 1/3 điện tích electron. Các hạt quark có thể có điện tích 2 lần hay 1 lần điện tích cơ bản nhưng không có hạt nào có điện tích, ví dụ, bằng 1/4 hay \pi lần điện tích của electron.

Tại sao lại như vậy? Năm 1931 Paul Dirac đưa ra một lời giải thích hết sức đặc sắc. Ông ta giả thiết thế giới không những chỉ có điện tích, mà có cả “từ tích”. Từ tích, hay còn gọi là đơn cực từ, là nguồn của từ trường. Bình thường một nam châm bao giờ cũng có cực bắc và cực nam.

Ta cứ tưởng tượng có thể tách hai cực của nam châm ra khỏi nhau, thì hai phần đó là hai đơn cực từ. Đơn cực từ chỉ mang một cực, hoặc là bắc, hoặc là nam, cũng như điện tích có thể dương, có thể âm.

Ta sẽ bàn việc đơn cực từ có tồn tại thật trong vũ trụ không sau đây một chút.

Hai đơn cực từ cũng tương tác với nhau giống như định luât Coulomb, nhưng ta thay điện tích bằng từ tích: F=m_1 m_2/r^2. Nhưng Dỉrac tìm ra là khi ta lấy một cặp bất kỳ bao gồm một điện tích e và một từ tích m, cơ học lượng tử đòi hỏi tích của em phải là một số nguyên lần \hbar c/2:

e m = \frac n2 \hbar c, \qquad n\in \mathbb{Z}

Như vậy chỉ cần trong vũ trụ có một từ tích có giá trị bằng m, thì tất cả các điện tích phải là bội của \hbar c/2m. Điều này giải thích tại sao các điện tích phải là bội của một điện tích cơ bản. Ngược lại, nếu e là điện tích nhỏ nhất trong thiên nhiên, thì tất cả các từ tích phải là bội của \hbar c/2e.

Lời giải thích này của Dỉrac hết sức thông minh, nhưng cho đến nay ta vẫn chưa tìm thấy từ tích nào trong vũ trụ. Cũng có thể chúng rất nặng, nên các máy gia tốc chưa tạo ra được chúng.

Nhưng trên giấy các nhà vật lý lý thuyết có thể “sáng tạo” ra những thế giới mới trong đó có cả điện tích lẫn từ tích. Một trong những thế giới này gọi là “N=4 supersymmetric Yang-Mills theory” (N=4 SYM), một lý thuyết trường có nhiều tính chất lý thú. Một trong những tính chất này được các nhà vật lý gọi là “đối ngẫu”: người ta nghĩ rằng N=4 SYM với điện tích cơ bản e và từ tích cơ bản bằng m có thể biến đổi thành N=4 SYM với điện tích cơ bản m, từ tích cơ bản e, bằng một phép đổi biến.  Đối ngẫu này trong vật lý được gọi là đối ngẫu điện từ, hay đối ngẫu Montonen-Olive, hay đối ngẫu S. Nó là một giả thuyết chưa ai chứng minh được chặt chẽ, mặc dù có nhiều lý do để ta tin nó là đúng.

Theo lời kể của Edward Witten thì năm 2004, sau khi nghe Ben-Zvi, ông ta đã hiểu rằng đối ngẫu Montonen-Olive này có liên quan đến đối ngẫu Langlands hình học.  Sau đó Kapustin và Witten viết một bài báo dài hơn 200 trang giải thích sự liên quan này. Tất cả những điều này tôi chỉ biết rất lờ mờ thôi, nhưng có vẻ chương trình Langlands có liên hệ mật thiết với một số tính chất cơ bản, và còn phần nào bí hiểm, của một số lý thuyết trường. Kapustin và Witten viết: “the geometric Langlands program for complex surfaces… can be understood as a chapter in quantum field theory.”

Xin cáo lỗi các bạn vì trình độ còn kém nên không thể giải thích công trình của Kapustin và Witten chi tiết hơn được. Hy vọng đến một lúc nào đó tôi sẽ hiểu tốt hơn.  Có thể trong tương lai công trình của Hòa Thượng sẽ nằm trong cơ sở của các sách giáo khoa vật lý!

Một lần nữa xin chúc mừng Hòa Thượng Thích Học Toán!

Đàm Thanh Sơn.

Categories: math
Design a site like this with WordPress.com
Get started